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Retrieval of episodic memory is a dynamical process in the large scale brain networks. In social

groups, the neural patterns, associated with specific events directly experienced by single members,

are encoded, recalled, and shared by all participants. Here, we construct and study the dynamical

model for the formation and maintaining of episodic memory in small ensembles of interacting

minds. We prove that the unconventional dynamical attractor of this process—the nonsmooth

heteroclinic torus—is structurally stable within the Lotka-Volterra-like sets of equations.

Dynamics on this torus combines the absence of chaos with asymptotic instability of every separate

trajectory; its adequate quantitative characteristics are length-related Lyapunov exponents.

Variation of the coupling strength between the participants results in different types of sequential

switching between metastable states; we interpret them as stages in formation and modification of

the episodic memory. Published by AIP Publishing. https://doi.org/10.1063/1.5023692

Our ability to graft images and ideas into the minds of

other humans is crucial for the existence of science, tech-

nology, and literature. Participation of a community

member in an event or group of events (episode) suffices

to implant the memory of that episode into the minds of

the whole community. In our daily life, we take this abil-

ity for granted, but only the recent advances of measure-

ment technique have disclosed how, e.g., a movie

spectator encodes and transfers aposteriori to listeners

the neural patterns associated with viewing specific epi-

sodes and how these event-specific patterns are shared

among the brains. In the large-scale networks of the indi-

vidual brain, a retrieval of episodic memory occurs in a

way of sequential switching between the events, the per-

petual “winnerless competition.” We propose and investi-

gate the mathematical model for the formation and

maintaining of common memory in interacting minds. By

combining rigorous proofs with numerical studies, we

show that weak coupling between the participant’s minds

ensures the existence of the so-called “attracting hetero-

clinic torus” in the phase space of the model. Changing

the coupling strength, we observe different types of

dynamics that correspond to various forms of episodic

memory.

I. INTRODUCTION

Even across different languages, our brains show
similar activity, or become “aligned” when we hear the
same idea or story. This amazing neural mechanism
allows us to transmit brain patterns, sharing memories
and knowledge.

Uri Hasson (2016).

Development of technology and science, as well as the

sheer existence of oral and written literature owes much to

the fact that personal participation in an event is not a neces-

sary precondition of keeping that event in one’s memory:

humans are able to mentally construct episodes when reading

or listening to recollections of other humans. A recent study,

based on analysis of magnetic resonance brain imaging dur-

ing the performance of verbal communication tasks, traced

how neural patterns associated with viewing specific scenes

in a movie were encoded, recalled, and then transferred to a

group of listeners who had not seen the movie.1 It disclosed

that event-specific patterns, observed in the brain default

mode network, were shared across the processes of encoding,

recalling, and constructing the same episodes. Such studies

uncover intimate correspondences between episodic memory

encoding and construction and underscore the role of the

common language in the transmission of memory to other

brains.

Communication in persistent social groups (families,

friends, colleagues, etc.) is facilitated by common episodic

memories: interpersonal knowledge of past, shared by the

group members.2 Distributed within the group, such memo-

ries serve as a stem around which new layers of shareable

information are accumulated. Notably, episodic memories

are not exact replicas of the lives: rather, they are organized

summaries of experience, encoded in the form of sequential

groups of events.3 According to the recent imaging data, the

brain areas responsible for storage and retrieval of episodic

memories include hippocampus, striatum, and the prefrontal

cortex.4,5

II. LOW-DIMENSIONAL MIND DYNAMICS

Below, we present and study a low-dimensional model

of mind-to-mind episodic memory interaction. Wea)Deceased
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emphasize from the beginning that we intend not to model

the brain itself as a system but to create a dynamical model

for the activity of this system. Our ultimate goal is to

describe, understand, and make predictions of mind dynam-

ics, obtaining, in particular, dynamical models of specific

classes of such activities as cognition, creativity, and auto-

biographic memory.

Recent technological progress has allowed the research-

ers to observe the brain patterns with resolution and clear-

ness that could be previously only dreamed of. The

prominent role is currently played by functional magnetic

resonance imaging (fMRI) that tracks the changes associated

with the blood flow through the brain. Experimental findings

indicate that cognition in the human brain, as well as the

conscience of certain mammals:

(a) is closer to determinism than to random processes;

(b) bears the characteristic features of low-dimensional

dynamics, and

(c) manifests itself in the form of sequential metastable

spatio-temporal patterns.

We cite just a few pertinent publications:

• In a recent study, Ma and Zhang investigate the temporal

organization of resting-state functional connectivity

(RSFC) in awake rodents and humans. They report: “We

found that transitions between RSFC patterns were not

random but followed specific sequential orders.

Transitions between RSFC patterns exhibited high repro-

ducibility and were significantly above chance,” and con-

clude “Spontaneous brain activity is not only nonrandom

spatially, but also nonrandom temporally.”6

• By analyzing local field potentials from the cortices of rats

under anesthesia, Hudson et al. find out that “recovery of

consciousness occurs after the brain traverses a series of

metastable intermediate activity configurations.”7 They

demonstrate that “recovery is confined to a low-

dimensional subspace” and conclude that “organization of

metastable states, along with dramatic dimensionality

reduction, significantly simplifies the task of sampling the

parameter space.”7

• Analysis of high temporal resolution human fMRI data

from a large sample of unrelated individuals in the study

of Shine et al.8 suggests that the “integrative core of brain

regions… manipulates the low-dimensional architecture

of the brain across an attractor landscape via highly con-

served modulatory neurotransmitter systems”; reconstruc-

tion of state-space trajectories unambiguously confirms

“existence of a low-dimensional, dynamic, integrated

component that recurs across multiple unique tasks and

demarcates a common cognitive architecture within the

human brain.” The authors of the study summarize:

“Global brain states exist along a low dimensional

manifold.”8

• In the study9 of incremental exhaustive cycling performed

by the group of physically active adults, the participants

were instructed to monitor bodily regions with discomfort

and pain. Tracking the evolution of pain-attention during

the exercises, the researchers disclosed the “dynamical

phenomenon of chunking that the biological-cognitive

system uses to manage larger sequence of information into

smaller units to facilitate information processing”; they

concluded that “the chunks operate on a heteroclinic cycle

of metastable states where each metastable state itself is a

heteroclinic cycle of basic information items.”
• Finally, experimental studies on the formation of episodic

memory10 show how “cortical structures generate event

representations during narrative perception and how these

events are stored to and retrieved from memory. The data-

driven approach allows to detect event boundaries as shifts

between stable patterns of brain activity without relying

on stimulus annotations and reveals a nested hierarchy

from short events in sensory regions to long events in high

order areas (including angular gyrus and posterior medial

cortex), which represent abstract, multimodal situation

models.” Below, we interpret such “shifts” as heteroclinic

switches between metastable patterns.

In accordance with this convincing evidence, certain

kinds of mind activity definitely can be (and already are) a

subject for low-dimensional dynamical modeling.11–13

Our modeling approach below is based on the following

assumptions, suggested by experimental data:

1. Sensory, semantic, and emotional information is encoded,

memorized, stored, and retrieved by global brain

networks.

2. During perception, encoded patterns are similar for differ-

ent humans that share memory representations for the

same real-life events.14

3. In the course of continuous perception, the brain automat-

ically segments experience into discrete events,15 “the

meaningful segments of one’s life, the coherent units of

one’s personal history.”16 Segmented information is

memorized in the form of abstract patterns at the high

level of hippocampus and cortical areas.14

4. Memorized events are segmented into chunks.17

Temporally organized chunks form episodes, organized

into sequences changing with environment.18

5. Recent studies provide evidence that within events, tem-

poral memory is related to temporal stability of brain

memory patterns.19 Accordingly, in the phase space, the

event patterns should display metastability: In the

retrieval process, the chunks compete and form hetero-

clinic chains of sequentially switching metastable

patterns.20–22

These assumptions lead us to the simplified dynamical

model of the mutual mind-to-mind interaction. We demon-

strate that the attractor of the model in the case of two inter-

acting subsystems (brains) for a wide range of parameters is

the unconventional object: the two-dimensional non-smooth

invariant torus. Peculiarity of dynamics upon it is strict

absence of chaos, contrasted with instability (in the sense of

Lyapunov) of each trajectory. Remarkably, the proper char-

acteristics of the instability are not the conventional

Lyapunov exponents (average rates of instability growth per

time unit), but the average rates of instability growth per unit

of orbit length in the phase space. At larger strength of the
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coupling between the partners, the torus undergoes a

breakup, and the resulting dynamical pattern indicates some

kind of cooperative interaction, akin to synchronization in

certain features, but different from it in the other ones.

The layout of the paper is as follows. In Sec. II, starting

from general requirements to characteristics of individual

brain dynamics and to kinds of interactions between the

brains, we delineate the class of considered dynamical

systems and reduce it to a set of coupled units, each one gov-

erned by Lotka-Volterra-like ordinary differential equations.

Each subsystem features the non-autonomous episodic mem-

ory recall; mathematically, we interpret it as the closed heter-

oclinic chain of episodes in the long term memory under

parametric excitation by sequences that come from the part-

ner subsystems.

The bulk of the paper is focused on the simplest case:

unidirectional mind-to-mind entrainment, “master-slave”

dynamics. In Sec. III, we show that the attractor of this sys-

tem is the two-dimensional non-smooth invariant torus.

When subsystems are uncoupled, this torus appears as the

direct product of two heteroclinic cycles, and, as we rigor-

ously prove, it persists at least under sufficiently small cou-

pling strength. Every trajectory on the torus is a heteroclinic

connection joining two metastable states of equilibrium.

Hence, dynamics on the torus is absolutely non-chaotic.

Nevertheless, as numerical experiments in Sec. IV force us

to believe, each trajectory in the basin of this attractor is

Lyapunov unstable. When, at stronger coupling, the torus

breaks up, dynamics in the slaved subsystem turns into alter-

nation of piecewise constant segments that follows the

switches in the master subsystem.

III. THE BASIC MODEL OF SOCIAL COOPERATION

Dynamical cell assembly coding belongs to prevailing con-

cepts in the context of information processing in the individual

human brain. In global functional brain networks, these assem-

blies form different spatio-temporal modes. When the minds

interact, specific networks are responsible for the performance

of specific cognitive functions in the partners. Since the coding

occurs on the population level, dynamics of the modes is usu-

ally low-dimensional.6 Low-dimensionality results from coher-

ent activity of many elements that form modes and can be

extracted from the records by application of, e.g., principal

component analysis.7,8 We assume that N different spatio-

temporal patterns (brain modes) Pið~r; tÞ; i ¼ 1; 2;…;N are

characterized by a discrete set of spatial coordinates ~r . Spatial

structure of the patterns is influenced, besides physiological fac-

tors, by the social environment. Noteworthy, Pið~r; tÞ may have

different sense, related to the performance of different cognitive

and behavioral tasks.

The patterns Pið~r; tÞ can be based on several brain sub-

networks like perceptual, memory, and motor brain circuits;

therefore, their intrinsic dynamics can be quite complex. In

certain cases, temporal and spatial patterns of the modes can

be separated: Pið~r; tÞ ¼ Qið~rÞRiðtÞ where Qið~rÞ describes the

spatial organization of the i-th mode and RiðtÞ characterizes

its temporal evolution. Remarkably, the amplitudes Ri cannot

be initiated “from outside”: the mode, absent at a particular

moment of time, will be absent for all subsequent times.

Suppose that all RiðtÞ obey a kinetic equation up to the sec-

ond order (lowest nontrivial). If, as the result of the inferen-

tial process, the spatial structure of the modes is known,

then, after factorization, the basic kinetic model for a single

brain can be written in the generalized Lotka-Volterra form

_Ri ¼ Ri

�
�ri � Ri �

XN

j 6¼i

�qijRj

�
þ efiðRiÞ; i ¼ 1;…;N: (1)

Here, �ri denotes the excitation rate of the i-th mode, f�qijg is

the cognitive inhibition matrix that characterizes the mutual

interaction between the modes, and e parameterizes the envi-

ronmental state-dependent fluctuations fi.

Below we describe the interaction between two social

partners; generalization to larger number of participants is

straightforward. Denote the temporal patterns RiðtÞ for part-

ners X and Y by the sets of functions xiðtÞ (i ¼ 1;…;Nx) and

ysðtÞ (s ¼ 1;…;Ny), respectively. In general, each mode of X
should be enabled to interact with every mode of Y and vice

versa. Then, collective dynamics is governed by the system

_xi ¼ xi ri � xi �
XNx

j 6¼i

qijxj � q
XNy

s¼1

hisys

0
@

1
Aþ efiðxiÞ;

_yk ¼ yk dk � yk �
XNy

k 6¼s

nksys � p
XNx

s¼1

gksxs

0
@

1
Aþ e�fkðykÞ;

(2)

where ri and dk are the respective sets of excitation rates for

the participants X and Y, fqijg and fnksg are their cognitive

inhibition matrices, the parameters p and q measure the strength

of the social interaction, and the interaction itself is prescribed

by the matrices fhisg and fgksg. Finally, fi and ~fk are state-

dependent fluctuations (noise) that will be specified below.

Formally, the system (2) is just the decomposition of (1).

However, our setup distinguishes between the patterns formed

by X and those formed by Y. Accordingly, we expect that the

largest elements in the matrices q; n; h; g are of the order one,

whereas the coupling coefficients p and q stay relatively small.

A. Configurations of social entrainment

Complex dynamics of the system (2) in the wide

domains of parameter values is able to represent the evolu-

tion of the sequences of events/episodes. It is thereby a con-

venient model for the analysis of mutual social influence on

the performance of episodic memory. In different regions of

its parameter space, various attractors can be encountered;

for example, many of the (NxþNy)! stationary solutions

(states of equilibrium) are stable in certain parameter ranges.

We are, however, not interested in stable equilibria or in sim-

ple limit cycles: episodic memory, as it is known from the

experiments, is neither time-independent nor strictly peri-

odic. Hence, we seek in the parameter space the domains

where all states of equilibrium are unstable nodes or saddle

points. Presence of many invariant hyperplanes in the phase

space favors formation of structurally (within the frame of

Lotka-Volterra-like systems) stable heteroclinic connections
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between the saddle points. In the context of the memory

functioning, such connections enable an efficient dynamical

way of information coding through robust sequential switch-

ing, based on the winnerless competition principle. The

image of this coding in the phase space is the stable hetero-

clinic channel (see Fig. 1).

In our mathematical and numerical studies below, we

restrict ourselves to the minimal configuration with

Nx¼Ny¼ 3: operating with just three patterns for each of

two partners delivers a revealing example of heteroclinic

switching in the mind-to-mind dynamics. Cases of larger Nx

and Ny, albeit more demanding computationally, can be

treated in the similar way.

If the information exchange between the participants is

unidirectional (jqj � jpj)—this happens, for example, if X
does not focus her/his attention on the visual or verbal sig-

nals of Y—the model (2) allows for simplification, enabling

the analytic investigation.

Purely unidirectional connection acquires importance in

yet another situation, relevant for the modeling of memory-

related processes. Suppose the brain X is not the brain of some

other person but it is the brain of Y in the past. Then, the stated

problem turns into the question, how the episodic memory

from the past encodes memory dynamics for the future: a

dynamical description of the imagination process. Several dec-

ades ago, Ingvar recognized: in order to be useful, a simulation

of the future event should be encoded into memory so that the

gained information can be retrieved at a later time when the

simulated behavior is actually carried out; he termed this pro-

cess “memory of the future”23 (for further details, see Refs. 24

and 25) From the dynamical theory point of view, “memory

of the future” is a result of the inhibitory interaction of the

events-modes from the past episodic memory with modes in

the present time (see Ref. 26). About the role of memory inhi-

bition in imagination of the sequences, see Ref. 27.

This setup differs from heteroclinic harmonic entrain-

ment, observed in the single three-state network under sinu-

soidal forcing:28 The localized in time actions of information

units are determined not only by the frequency of hetero-

clinic cycling but also by the characteristics (exit times) of

metastable states.

B. Dynamical characteristics: Length-related
Lyapunov exponents

When characterizing dynamical regimes in the model

(2), we cannot rely on the standard tools like conventional

Lyapunov exponents: in the situation of heteroclinicity to

states of equilibrium, they are of little help. Recall that the

Lyapunov exponents are defined for the reference trajectory

in the system of order N as

ki ¼ lim
t!1

1

t
log
k~xiðtÞk
k~xið0Þk

; i ¼ 1;…N; (3)

where ~xiðtÞ are linearly independent solutions of the lineari-

zation near this reference trajectory, which start from N
appropriate perturbation vectors ~xið0Þ. In our case, we expect

that the largest ki vanish and cannot help us to measure the

amount of instability stored in the attraction basin.

This can be explained by the following reasoning. A

conventional Lyapunov exponent characterizes the rate of

perturbation growth per unit of time. For trajectories close to

heteroclinicity and their perturbations tangent to invariant

hyperplanes in the phase space of (2), the overwhelming

(asymptotically tending to 1) proportion of time is spent in

nearly static configurations, hence a characterization in terms

of time units loses its merits. A more appropriate characteris-

tics of weak instability in this situation requires a different

parameterization of the trajectory: the rate of perturbation

growth per unit of length of the reference trajectory in the

phase space

Ki ¼ lim
t!1

1

LðtÞ log
k~xiðtÞk
k~xið0Þk

; i ¼ 1;…N; (4)

where L(t) is the (Euclidean) length of the segment of the ref-

erence phase trajectory between time instants 0 and t. This

kind of characteristics was introduced in Ref. 30 where the

standard (time-related) Lyapunov exponent vanished for simi-

lar reasons, whereas the length-related ones were positive. For

the numerical example treated below in Sec. IV, in a range of

coupling strength there are two positive length-related expo-

nents K1,2 and, hence, k~x1;2ðtÞk � exp ðK1;2LðtÞÞ. Recalling

that dynamics with two or more positive ki is termed

“hyperchaos,” here we can speak of weak hyperchaos.

The length-related Lyapunov exponents not only quan-

tify this kind of dynamics but also serve as indicators of

essential transitions: in our context, bifurcations of the torus

break-up. In the exemplary system treated in Sec. IV, such

bifurcations occur due to the partial regain of stability by

equilibria belonging to the attractor: their formerly two-

dimensional unstable manifolds become one-dimensional.

After this event, only one length-related Lyapunov exponent

stays positive. Accordingly, dynamics becomes “one-

dimensional” but in a tricky way: time plots of observables

are almost piecewise constant, with each plateau correspond-

ing to the interval of activity for one of the master variables

(see details below).

IV. NON-SMOOTH TORUS: RIGOROUS RESULTS

Here, we introduce and study a new dynamical object:

two dimensional non-smooth invariant torus T
2 that can be

viewed as a mathematical image of interactions, in the

master-slave way, of two cognitive systems.

FIG. 1. (a) Global brain network whose activity can be represented in the

cognitive space by robust sequential switching; excitation level of different

network modes is shown by different colors. (b) Stable heteroclinic channel

with a chain of metastable states (informational patterns). Dashed lines: sep-

aratrices of metastable states. Adapted from Ref. 26.
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When the systems are uncoupled, this object appears as

the direct product of two heteroclinic cycles, and, as we

prove below, it persists at least under small rates of coupling.

Since every trajectory on T
2 is a heteroclinic connection

between two saddle points, dynamics upon it cannot be cha-

otic. Nevertheless, as follows from numerical experiments in

Sec. IV, each trajectory in the basin of this attractor is

Lyapunov unstable. Thus, we deal here with a situation,

quite different both from the case of chaotic attractors and

from the phenomenon of transient chaos where instability of

trajectories is caused by the presence of an unstable chaotic

set in the boundary of the attractors basin.29 For the first

time, dynamics of this kind was reported in Ref. 30: a

numerical study of interaction between two systems, one of

them possessing a heteroclinic cycle, and another one having

a stable limit cycle.31 Two-dimensional sets, entirely consist-

ing of heteroclinic connections, were studied also in Refs. 32

and 33 but instability of trajectories in the basin of attractor

was out of scope of those publications.

In this section, we treat the variant of the system (2)

with unilateral coupling and without fluctuating terms

_xi ¼ xi ri � xi �
X
j 6¼i

qijxj

� �
; (5)

_yk ¼ yk dk � yk �
X
s 6¼k

nksys � p
X3

s¼1

gksxs

0
@

1
A; (6)

where ri > 0; qij > 0, dk > 0; nks > 0; gks � 0, i; j; k;
s 2 f1; 2; 3g.

A. The uncoupled system

Our analysis refers to small values of the coupling

strength p. We begin with the decoupled case

_xi ¼ xi ri � xi �
X
j6¼i

qijxj

� �
; i; j ¼ 1; 2; 3; (7)

_yk ¼ yk dk � yk �
X
s 6¼k

nksys

� �
; k; s ¼ 1; 2; 3: (8)

First, we impose conditions under which subsystem (7) has a

heteroclinic cycle.35 This system has altogether 8 states of

equilibrium. Of these, three states lie on the coordinate axes.

These are O1 ¼ ðr1; 0; 0Þ; O2 ¼ ð0; r2; 0Þ; O3 ¼ ð0; 0; r3Þ
with eigenvalues equal to

r2 � q21r1; r3 � q31r1;�r1 at O1;

r3 � q32r2; r1 � q12r2;�r2 at O2; and

r1 � q13r3; r2 � q23r3;�r3 at O3:

Under the conditions

r2 � q21r1 > 0; r3 � q31r1 < 0;

r3 � q32r2 > 0; r1 � q12r2 < 0;

r1 � q13r3 > 0; r2 � q23r3 < 0: (9)

every Oi (i¼1,2,3) has the one-dimensional unstable and the

two-dimensional stable manifolds.

Moreover, if q21q12 6¼ 1; q32q23 6¼ 1, and q13q31 6¼ 1;
the unstable manifold of Oi contains a heteroclinic trajectory

Ci;ðimod3Þþ1 joining Oi and Oðimod3Þþ1. Under a combination

of all these conditions, the system (7) has a heteroclinic

cycle

C ¼ [iOi[iCðimod3Þþ1:

For the sake of definiteness, we assume that the leading

direction on the stable manifold of Oi is different from the

coordinate axis, i.e.,

�r1 < r3 � q31r1;

�r2 < r1 � q12r2;

�r3 < r2 � q23r3:

(10)

Then, the heteroclinic cycle has a shape sketched in Fig. 2(a).

Finally, we impose stability conditions

�ðr3 � q31r1Þ
r2 � q21r1

> 1;

�ðr1 � q32r2Þ
r3 � q32r2

> 1;

�ðr2 � q23r3Þ
r1 � q13r3

> 1;

(11)

under which C is attracting.

Similarly, for the subsystem (8), we consider three equi-

librium points ~O1 ¼ ðd1; 0; 0Þ; ~O2 ¼ ð0; d2; 0Þ, ~O3 ¼
ð0; 0; d3Þ and impose

(i) Conditions for the existence of one-dimensional

unstable and two-dimensional stable manifolds at ~Oi:

d2 � n21d1 > 0; d3 � n31d1 < 0;

d3 � n32d2 > 0; d1 � n12d2 < 0;

d1 � n13d3 > 0; d2 � n23d3 < 0:

(12)

(ii) Conditions for leading directions:

�d1 < d3 � n31d1;

�d2 < d1 � n12d2;

�d3 < d2 � n23d3:

(13)

FIG. 2. (a) The heteroclinic cycle C and (b) unfolding of the torus T0 on the

plane: sketch of the vector field.
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(iii) Conditions for the existence of heteroclinic trajecto-

ries: n21n12 6¼ 1; n32n23 6¼ 1; n13n31 6¼ 1:
(iv) Conditions of stability:

�ðd3 � n31d1Þ
d2 � n21d1

> 1;�ðd1 � n32d2Þ
d3 � n32d2

> 1;�ðd2 � n23d3Þ
d1 � n13d3

> 1:

Under these provisions, subsystem (8) has an attractor

~C ¼ [3
i¼1

~Oi[i
~Cðimod3Þþ1;

where ~Cðimod3Þþ1 is the heteroclinic trajectory joining ~Oi and
~Oðimod3Þþ1. The heteroclinic cycle ~C looks analogously to C
in Fig. 2(a).

Hence, it follows that the systems (7) and (8) have an

invariant set T0 that is the direct product of C and ~C:

T0 ¼ C� ~C. Since both C and ~C are homeomorphic to the

circle, T0 is homeomorphic to the two-dimensional torus T
2.

The equilibrium points belonging to T0 are Oij ¼ Oi � ~Oj;

the eigenvalues of the linearized systems (7) and (8) are sum-

marized in the Table I.

The assumed conditions imply that each of the points

Oij has the two-dimensional unstable manifold and the four-

dimensional stable manifold (below we denote these mani-

folds by, respectively, Wu and Ws). Moreover, some of Oij

are joined by heteroclinic trajectories. To list them, we intro-

duce the following notation: let HðA! BÞ be a heteroclinic

trajectory joining the equilibrium points A and B. For hetero-

clinic cycles C and ~C, we have the heteroclinic trajectories:

HðO1 ! O2Þ ¼: C12; HðO2 ! O3Þ ¼: C23; HðO3 ! O1Þ ¼:
C31; Hð ~O1 ! ~O2Þ ¼: ~C12, Hð ~O2 ! ~O3Þ ¼: ~C23, and Hð ~O3

! ~O1Þ ¼: ~C31. Heteroclinic trajectories can be listed in the

way presented in Table II.

For convenience, we place in the left column of this

table the equilibrium points that enter the corresponding

direct products. These 18 heteroclinic trajectories form a

basic heteroclinic network: see Fig. 3. Let us now construct a

two-dimensional invariant surface for which C0 plays the

role of “skeleton.” For that, we show that each “rectangle” in

C0 serves as a boundary of a two-dimensional invariant sur-

face. Consider, e.g., the rectangle formed by the heteroclinic

trajectories HðO13 ! O11Þ; HðO31 ! O11Þ, HðO33 ! O31Þ;
HðO33 ! O13Þ and the points O33, O31, O13, and O11. All

these heteroclinic trajectories and saddle points belong to the

four-dimensional invariant plane x2 ¼ y2 ¼ O which we

denote by R4.

Recalling that HðO13 ! O11Þ ¼ O1 � ~C31, HðO33

! O31Þ ¼ O3 � ~C31, and HðO31 ! O11Þ ¼ C31 � ~O1;
HðO33 ! O13Þ ¼ C31 � ~O3, we naturally consider the two-

dimensional surface C31 � ~C31 ¼ ~R0 that possesses the fol-

lowing properties:

(i) It is invariant by definition.

(ii) ~R0 � R4, by definition.

(iii) ~R0 � Wu
O33

. Indeed, a point in ~R0 is the product of

two points, say P 2 C31 and Q 2 ~C31. As time goes to

�1, the representative point on C31 tends to O3 and

that on ~C3 tends to ~O3, so the representative point the

trajectory of the full system going through P � Q
tends to O33.

(iv) ~R0 � Ws
O11

. The proof is the same as in (iii).

Thereby, ~R0 is a collection of heteroclinic connec-

tions joining O33 and O11 (see Fig. 4).

In the same way, we prove that there are other 8 rectan-

gles with boundaries consisting of heteroclinic trajectories

from the basic network (see Fig. 3). They form a two-

dimensional surface, say, T0, homeomorphic to the two-

dimensional torus. In fact, T0 is the direct product of hetero-

clinic cycles in the systems (7) and (8).

TABLE I. Eigenvalues of the linearized system (7) and (8).

Saddle Eigenvalues

O11 �r1; r2 � q21r1, r3 � q31r1;�d1, d2 � n21d1; d3 � n31d1

O12 �r1; r2 � q21r1, r3 � q31r1;�d2, d3 � n32d2; d1 � n12d2

O13 �r1; r2 � q21r1, r3 � q31r1;�d3, d1 � n13d3; d2 � n23d3

O21 �r2; r3 � q32r2, r1 � q31r1;�d1, d2 � n21d1; d3 � n31d1

O22 �r2; r3 � q32r2, r1 � q12r2;�d2, d3 � n32d2; d1 � n12d2

O23 �r2; r3 � q32r2, r1 � q12r2;�d3, d1 � n13d3; d2 � n23d3

O31 �r3; r1 � q13r3, r1 � q23r3;�d1, d2 � n21d1; d3 � n31d1

O32 �r3; r1 � q13r3, r2 � q23r3;�d2, d3 � n32d2; d1 � n12d2

O33 �r3; r1 � q13r3, r2 � q23r3;�d3, d1 � n13d3; d2 � n23d3

TABLE II. Heteroclinic trajectories of basic heteroclinic network of T0.

O1 HðO11 ! O12Þ ¼ O1 � ~C12 HðO12 ! O13Þ ¼ O1 � ~C23 HðO13 ! O11Þ ¼ O1 � ~C31

O2 HðO21 ! O22Þ ¼ O2 � ~C12 HðO22 ! O23Þ ¼ O2 � ~C23 HðO23 ! O21Þ ¼ O2 � ~C31

O3 HðO31 ! O32Þ ¼ O3 � ~C12 HðO32 ! O33Þ ¼ O3 � ~C23 HðO33 ! O31Þ ¼ O3 � ~C31

~O1 HðO11 ! O21Þ ¼ C12 � ~O1 HðO21 ! O31Þ ¼ C23 � ~O1 HðO31 ! O11Þ ¼ C31 � ~O1

~O2 HðO12 ! O22Þ ¼ C12 � ~O2 HðO22 ! O32Þ ¼ C23 � ~O2 HðO32 ! O12Þ ¼ C31 � ~O2

~O3 HðO13 ! O23Þ ¼ C12 � ~O3 HðO23 ! O33Þ ¼ C23 � ~O3 HðO33 ! O13Þ ¼ C31 � ~O3

FIG. 3. Heteroclinic network C0 on the torus T0.
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By construction, the complete set of trajectories on T0

consists of nine metastable equilibria Oij and heteroclinic

connections joining them pairwise. Since in the full phase

space of systems (7) and (8) all Oij are structurally stable

saddles, their presence on the toroidal surface (in the absence

of compensating nodes or foci) may seem to violate the

index theorem. However, reduction to T0 involves “folding”

along the separatrices of the saddles. As seen in the sche-

matic unfolding of T0 on the two-dimensional plane sketched

in Fig. 2(b), the procedure of folding turns steady states into

compound equilibria: in the adjacent segment of the plane,

each of them is a source in one quadrant, a sink in another

one, and a saddle point in two remaining quadrants, so that

the resulting Poincar�e index of every steady state is identi-

cally zero. Accordingly, the total index of T0 vanishes as

well, as required for every two-dimensional toroidal surface.

Now we formulate the sufficient conditions under which

T0 is an attractor. For that, we remind the notion of the sad-

dle index.34 If O is a hyperbolic saddle point with Jacobian

eigenvalues k1;…; km; c1;…; cn such that Reki < 0,

Recj > 0, then the number

� ¼ �maxiReki

maxjRecj

is called the saddle index of O. If � > 1, the point O is called

the dissipative saddle. For example, for the point O33, the

saddle index equals

� ¼ �maxfr2 � q23r3; d2 � n23d3g
maxfr1 � q13r3; d1 � n13d3g

:

See Table I and the inequalities (9)–(13).

Theorem 1. If all saddle points in C0 are dissipative,
then T0 is an attractor.

Proof. It suffices to show that the representative point on

the trajectory passing through any initial point in a neighbor-

hood of T0 tends to T0 as t!1. Without a loss of general-

ity, we start with an initial point q0 that is close to one of the

equilibria in C0; let this equilibrium be, e.g., O33. Let

� ¼ distðq0;W
s
O33Þ. It follows (see Refs. 34 and 38) that the

orbit passing through q0 leaves a neighborhood of O33 at a

point q1 such that distðq1;W
u
O33Þ < ��0 where 1 < �0 < �33

(�33 denotes the saddle index of O33). Then, the orbit follows

a trajectory on Wu
O33 and comes, after a finite time, to a point

q2 in a small neighborhood of the equilibrium ~O that is either

O33 or O13 or O11, so that distðq3;W
sð ~OÞÞ < C��0 , C¼ const.

If � has been small enough, then C��0 < �=2. Then we

reproduce the previous consideration for the point ~O, replac-

ing � by �=2. Repeating this procedure again and again, we

ensure that distðq2kþ1; T0Þ < �=2k where q2kþ1 is the repre-

sentative point after the time in which the trajectory inter-

sects k successive neighborhoods. Remark that we should

choose constant C only finitely many times independently of

k since the passage time from one neighborhood of an equi-

librium to another one in the same rectangle is bounded from

above. Thus, the representative point tends to T0 as

t! þ1. �

Table III shows the saddle indices of all saddles in C0.

B. Persistence of C0 and T0 for small values of jpj

Now we introduce in Eq. (8) the weak non-zero cou-

pling p from the subsystem X to the subsystem Y.

1. Persistence of C0

To show the persistence of the heteroclinic network C0,

we consider all heteroclinic orbits belonging to it. Without

the loss of generality, we choose the rectangle ~R0; the proof

for other rectangles is similar.

a. Persistence of HðO33 ! O31Þ ¼ O1 � ~C31. This trajec-

tory belongs to the three dimensional plane

x2 ¼ x3 ¼ 0; y2 ¼ 0. Denote it by R3
1. This plane is invariant

for e ¼ 0 both for the systems (7) and (8) and (5) and (6).

Inside R3
1 the point O33 ¼ ðr1; 0; d3Þ is the saddle equilib-

rium point for the systems (7) and (8) with eigenvalues

�r1; d1 � n13d3; d2 � n23d3, see (12), i.e., with one-

dimensional unstable manifold whereas the point O31

¼ ðr1; 0; d1Þ is the stable node with eigenvalues �r1;�d1;
d3 � n31d1 (see Table I). Inside R3

1, for small values of jpj,
the saddle (node) equilibrium point stays the saddle (node).

Denote them by O33ðpÞ and O31ðpÞ. The smooth dependence

of the unstable manifold on parameters and continuous

dependence of solutions of the ODE on parameters imply

that for small values of jpj there exists a heteroclinic orbit

FIG. 4. The rectangle ~R0.

TABLE III. Saddle indices of the saddle equilibrium points.

Saddle Saddle index �

O11 �maxfr3 � q31r1; d3 � n31d1g
maxfr2 � q21r1; d2 � n21d1g

O12 �maxfr3 � q31r1; d1 � n12d2g
maxfr2 � q21r1; d3 � n32d2g

O13 �maxfr3 � q31r1; d2 � n23d3g
maxfr2 � q21r1; d1 � n13d3g

O21 �maxfr1 � q12r2; d3 � n31d1g
maxfr3 � q32r2; d2 � n21d1g

O22 �maxfr1 � q12r2; d1 � n12d2g
maxfr3 � q32r2; d3 � n32d3g

O23 �maxfr1 � q12r2; d2 � n23d3g
maxfr3 � q32r2; d1 � n13d3g

O31 �maxfr2 � q23r3; d3 � n31d1g
maxfr1 � q13r3; d2 � n21d1g

O32 �maxfr3 � q23r3; d1 � n12d2g
maxfr1 � q13r3; d3 � n32d2g
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joining O33ðpÞ and O31ðpÞ. Persistence of this heteroclinic

trajectory is a structurally stable feature.

b. Persistence of HðO33 ! O13Þ ¼ C31 � ~O3. This trajec-

tory belongs to the three-dimensional invariant plane

x2 ¼ 0; y1 ¼ y2 ¼ 0, say R3
2. Inside R3

2 the point O33

¼ ð0; r3; d3Þ is the saddle with the eigenvalues r1 � q13r3;
r2 � q23r3;�d3, and the point O13 ¼ ðr1; 0; d3Þ is the node

with the eigenvalues �r1; r3 � q31r1;�d3. The situation is

structurally stable as well.

c. Persistence of HðO31 ! O11Þ ¼ C31 � ~O1. This trajec-

tory belongs to the three-dimensional invariant plane

x2 ¼ 0; y2 ¼ y3 ¼ 0, say R3
3. Inside R3

3 (which is invariant

also for p 6¼ 0) the point O31 ¼ ðr3; 0; d1Þ is the saddle with

the eigenvalues �r3; r1 � q13r3;�d1, and the point O11 is

the node with the eigenvalues �r1; r3 � q31r1;�d1. The

heteroclinic trajectory joining O31 and O11 inside R3
3 is also

structurally stable.

d. Persistence of HðO13 ! O11Þ ¼ O1 � ~C31. The hetero-

clinic trajectory belongs to the three-dimensional invariant

plane x2 ¼ x3 ¼ 0; y2 ¼ 0, say R3
4. Inside it the point O13

¼ ðr1; 0; d3Þ is the saddle with the eigenvalues

�r1; d1 � n13d3;�d3, and O11 is the node, with the eigen-

values �r1;�d1; d3 � n31d1. Again, persistence of this tra-

jectory is a structurally stable property.

Summarizing, we conclude:

Theorem 2. Under the above conditions the heteroclinic
network C0 persists for sufficiently small values of jpj.

2. Persistence of the heteroclinic attractor

To show the existence of a heteroclinic attractor at weak

coupling jpj, we prove the persistence of all rectangles that

form T0. As an example, we take the rectangle ~R0 ; for other

rectangles the proof is similar. The proof is based on the fol-

lowing facts:

(i) All points OijðpÞ belong to the invariant four-

dimensional space R4
0 ðx2 ¼ y2 ¼ 0Þ. At small values

of jpj, they are saddle points in R4 with two-

dimensional unstable manifolds. Heteroclinic trajec-

tories between them that exist for small jpj due to

Theorem 2, also belong to R4
0. Denote them by

CijðpÞ, so that Cijð0Þ ¼ Cij; i; j 2 f1; 2; 3g.
(ii) At p ¼ 0, the point O11 is the stable node in

R4
0 with negative eigenvalues �r1, �d1; r3 � q31d1,

d3 � n31d1, all of them disjoint from zero. Hence, at

small values of jpj, it is still a sink, and there exists

an absorbing region U with the maximal attractor

O11 inside it (see Fig. 5).

(iii) The local unstable manifold of O33ðpÞ depends

smoothly on parameters, so for small values of jpj it is

C1 close to WuðO33ð0ÞÞ, the local unstable manifold

for p ¼ 0. Therefore, if one chooses an initial point q
on the interval (A, B), Fig. 5, on WuðO33ðpÞÞ, it will

be close to a point q0 2 WuðO33ð0ÞÞ. For the

uncoupled system (p ¼ 0), the trajectory passing

through q0 reaches U in finite, bounded from above

time. Thus, the trajectory of the systems (5) and (6)

passing through q also comes into U in finite time if

jpj is small enough.

(iv) We show now that the representative point on the tra-

jectory passing through a point ~q 2 ðA;A1Þ [ ðB;B1Þ
comes eventually into U. Without the loss of general-

ity, we may assume that the point B is so close to B1

that the trajectory passing through it intersects a small

neighborhood V of O13ðpÞ at a point ~q1 such that

distð~q1;W
uðO13ðpÞÞ < d. We apply now the known

results (see, e.g., the book34) to establish that

distð~q2;W
uðO13ðpÞÞ < d� where ~q2 is the point on the

considered trajectory at the instant when it leaves V
(see Fig. 6) and 1 < � < �13, �13 is the saddle index

of O13ðpÞ.
This means that if d is small enough, then the

point ~q2 is close to a point on the heteroclinic trajec-

tory joining O13ðpÞ and O11ðpÞ; therefore, the trajec-

tory passing through ~q2 reaches U in finite time. The

proof for points on ðA;A1Þ is the same.

(v) Thus, we have proved that every trajectory passing

through a point on (A1, B1) enters U, and then tends to

O11ðpÞ. The points on these trajectories together with

equilibrium points and heteroclinic trajectories

belonging to C0ðpÞ form the desired rectangles ~R0ðpÞ.

FIG. 5. Trajectories on the rectangle.

FIG. 6. Trajectories in V.
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The union of these rectangles forms the surface T(p).

The fact that T(p) is homeomorphic to T0 follows directly

from the construction above. It follows

Theorem 3. The attractor T0 persists for small jpj.
Since the saddle indices of all equilibria depend continu-

ously on p, the following statement holds:

Theorem 4. Under the conditions of Theorem 3, the
torus T(p) remains to be an attractor for small jpj.

V. NUMERICAL INVESTIGATION

A. General aspects

For numerical studies of the systems (5) and (6), we fix

the coefficients of linear terms at r1¼ 1, r2¼ 1.1, r3¼ 0.9,

d1¼ 2.2, d2¼ 2.1, and d3¼ 1.9. For the matrices, the values

q21 ¼ 0:6
r2

r1

; q31 ¼ 1:65
r3

r1

; q32 ¼ 0:7
r3

r2

;

q12 ¼ 1:55
r1

r2

; q13 ¼ 0:62
r1

r3

; q23 ¼ 1:45
r2

r3

and

n21 ¼ 0:6
d2

d1

; n31 ¼ 1:65
d3

d1

; n32 ¼ 0:7
d3

d2

;

n12 ¼ 1:55
d1

d2

; n13 ¼ 0:62
d1

d3

; n23 ¼ 1:45
d2

d3

are adopted. Finally, the coefficients gij at mixed terms obey

gij ¼ iþ 0:2j2.

In nine states of equilibrium of Eqs. (5) and (6), exactly

two of three xi and two of three yi vanish. At the above val-

ues of coefficients and at vanishing or sufficiently weak cou-

pling p, all these equilibria are saddles with two-dimensional

unstable manifolds. At p¼ 0, the x- and y-subsystems decou-

ple; each of them possesses three saddles with one-

dimensional unstable manifold and the heteroclinic contour

formed by the separatrices that connect those saddles. The

above choice of parameter values ensures (in terms of the

corresponding saddle indices) that each contour is attracting

in the partial subspace of the respective subsystem. In accor-

dance with the results of Sec. III, an attractor in the joint

phase space at small values of jpj should be a persistent two-

dimensional torus T0 with the heteroclinic network C0 upon

it (see Fig. 3).

Peculiarities of dynamics near attracting heteroclinic

contours result in long epochs when a trajectory hovers in

vicinities of saddle points. Duration of these repetitive

epochs grows exponentially, and a perfect numerical integra-

tor will, instead of delivering information about the whole

attracting state, exhaust the time resources in ever longer

passages near the unstable equilibrium. It is known that inev-

itable numerical inaccuracies (at least, at the roundoff level)

and/or introduction of explicit noise are able to kick the tra-

jectories from the vicinities of the saddles; as a result of

these imperfections, a system with an attracting heteroclinic

contour displays virtually periodic behavior, with the

“period” proportional to the logarithm of the imperfection

amplitude. Below, we introduce this imperfection in the

explicit controllable way; this should allow us to infer the

asymptotic properties of the unperturbed dynamics on T0

from observable properties of perturbed numerical evolution.

Equations (5) and (6) possess invariant hyperplanes:

xi¼ 0 or yi¼ 0 8i. We impose impenetrable barriers parallel

to these hyperplanes: none of the coordinates is allowed to

vanish. In this way, we replace the continuous dynamics by a

piecewise-continuous one: after every timestep of integration

of (5) and (6), the “calibrations”

xi ! maxðxi; eÞ; yi ! maxðyi; eÞ; i ¼ 1; 2; 3 (14)

are performed, with fixed small e > 0. In this way, e becomes

a governing parameter of the dynamical system.

B. Measuring the instability rates

A hallmark of a motion along the invariant two-

dimensional surface is two vanishing Lyapunov exponents.

The top panel of Fig. 7 shows in the decreasing order all six

Lyapunov exponents, evaluated in the standard way [cf. (4)]

for the trajectory of the system (5), (6), and (14) at a rela-

tively weak coupling p¼ 0.01 for t¼ 5� 105 and e ranging

from 10–3 to 10–36. Indeed, at this level of graphical resolu-

tion, we get an impression that at sufficiently small values of

e the Lyapunov exponents tend to constant values, and their

set with four negative and two vanishing values of ki charac-

terizes a motion along the attracting two-dimensional torus.

However, a proper magnification of the region adjacent to

zero (middle panel of Fig. 7) discloses that the saturation for

the two largest exponents is deceptive: both exponents

approach zero rather slowly, k1;2ðeÞ � �1= log e. At finite

values of e, the estimates k1;2 stay positive, indicating pres-

ence of two modes of instability, albeit rather weak.

Computation of conventional Lyapunov exponents ki in

accordance with (3) is ambiguous for the two largest ones.

We are much better served if, instead, we use the length-

related characteristics Ki, defined by Eq. (4) [For widespread

situations with non-zero average speed of motion along the

attractor in the phase space, characteristics (3) and (4) are,

up to a constant factor, equivalent. This does not hold for (5)

and (6) and similar systems where the average speed tends to

zero in the limit t!1.] As visualized in Fig. 7(c), esti-

mates of both length-related exponents K1,2 stay nearly con-

stant in the considered range of e. This means that

k~x1;2ðtÞk � exp ðK1;2LðtÞÞ.
Similarly to the jargon based on conventional Lyapunov

exponents where presence of two and more positive LE is

called “hyperchaos,” here, we can speak of “weak hyper-

chaos.” Of two positive exponents shown in Fig. 7(c), the

larger one stems from the y-subsystem of the Eqs. (5) and

(6), whereas the smaller one is related to the intrinsic dynam-

ics of the x-subsystem.

1. Choosing the appropriate length

Before presenting reaction of K1,2 to variation of the

coupling amplitude p, an important technical aspect should

be discussed. The flow (5) and (6) is a skew system: the vari-

ables xi act upon the set fyig without reverse action. By con-

struction, internal dynamics in the subspace xi (i¼ 1, 2, 3) is
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independent of the value of p. Three of the six Lyapunov

exponents characterize evolution of perturbations within this

subspace and do not depend on p; in Fig. 7, these are, along

with k2, the negative exponents k3 and k5. Being restricted to

the internal dynamics of the subsystem x, the re-

parameterized exponent K2 should stay p-independent as

well. However, the total length of the phase trajectory

includes the coordinates yi and thereby depends on p; hence,

it cannot be used in the evaluation of K2 and should be

replaced there by the length LxðtÞ of the projection onto the

x-subspace. For a comparison of the growth rates of two

instability modes, we cannot express them in terms of differ-
ent lengths, hence below we substitute L(t) in Eq. (4) by

LxðtÞ both for K1 and K2.

Notably, for K1 this procedure is not especially accurate

at vanishing and very small values of p: as mentioned above,

at p¼ 0, K1 characterizes the growth of instability in the iso-
lated subsystem y where a normalization with respect to Ly

would be an obvious choice. At very small p, the influence

of the coupling subsystem x is weak, and an evaluation in

terms of Lx may distort the whole picture. This is confirmed

in the left panel of Fig. 8: there, the estimate of K1 based on

Lx approaches the horizontal asymptote at small e distinctly

slower than analogous estimates based on Ly or the total

length L. The length values have been determined in accor-

dance with the following protocol: for all values of e (and

further below, of the parameter p), the trajectory starts from

the same initial conditions, and after a (discarded) transient

of 103 time units is further integrated for 5� 105 time units,

producing a phase curve in the 6-dimensional phase space.

For this curve, we calculate its total Euclidean length L as

well as the lengths of its projections onto the three-

dimensional x- and y-subspaces: respectively, Lx and Ly.

C. Variation of the coupling strength

Variation of the parameter p affects the dynamics of the

systems (5), (6), and (14), both quantitatively and qualita-

tively. In the expression for the growth rate (4), this concerns

y-related terms in the length L of the reference orbit and in

the norm k~xðtÞk of the perturbation. We start with the influ-

ence of p upon L under fixed observation time t. When, at

constant e 6¼ 0, the coupling p is increased, repulsion near

the saddles in the y-subspace weakens (quantitatively, this

can be read off the respective saddle indices), hence the sys-

tem stays longer in the neighborhoods of those saddles, and

the average speed of motion across the y-subspace lowers.

As a result, the total length of the reference orbit, as well as

the length of its y-projection, decreases. This effect is illus-

trated in the right panel of Fig. 8. At low values of p, y-

related components dominate in the total length; at larger p,

in contrast, Ly becomes much shorter than p-independent Lx,

so that the difference between the total length and the length

of x-projection becomes virtually negligible.

For estimates of the mean growth rates K1,2 of perturba-

tions, we use the p-independent length LxðtÞ, so that the

entire effect is due to changes in the value of k~xðtÞk. Recall

FIG. 8. Characteristic lengths for phase trajectories of (5) and (6). Green,

blue, and red curves correspond to measurements based on Lx, Ly, and the

total length L, respectively. Integration interval: t ¼ 5� 105. (a) Instability

rate (4) at p¼ 0.01 and variable e in terms of different projections of trajec-

tory. (b) Dependence of lengths on the coupling strength p at e ¼ 10�27.

FIG. 7. Characteristics of instability for Eqs. (5), (6), and (14) at p¼ 0.01.

(a) and (b) Conventional Lyapunov exponents. (c) Length-related Lyapunov

exponents.
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that the rate K2 characterizes the internal dynamics in the x-

subsystem and is thereby insensitive to variations of p. In

contrast, the value of K1 (determined at p¼ 0 by dynamics in

the subspace y), varies when p is changed. This is illustrated

in Fig. 9.

As we see in the plot, increase in p weakens this instabil-

ity mode: the value of K1 nearly monotonically decays until,

at p�0.175 it becomes smaller than the exponent K2.

Further growth of p results in a jagged non-monotonic pat-

tern: probably, an indicator of internal transitions in this

weakly chaotic state. Finally, K1 changes sign close to

p¼ 0.27. There, this mode of slowly growing instability is

replaced by the exponentially decaying perturbations, char-

acterized by negative conventional Lyapunov exponent.

Only one weakly chaotic component, corresponding to evo-

lution of x-variables persists; in the projections of y-varia-

bles, there is almost no dynamics: practically all the time

they hover close to the saddle points, and the total length of

the trajectory L nearly coincides with the length Lx of the x-

projection. In this way, the weakly chaotic dynamics close to

the torus T0 of the whole system is replaced by the “simpler”

weakly chaotic dynamics near the heteroclinic contour of the

master x-subsystem. Around p � 0:45, there is a short range

of p where the negative Lyapunov exponent nearly vanishes

again; there, dynamics of the variables y consists of short

jerks, and the length of projection onto subspace y becomes

comparable with x-projection (cf. Fig. 8).

D. Transformations in the phase space

Changes in the instability rates, imposed by variation of

p, are reflected in changes of the phase portraits. In a reason-

ably broad parameter range 0 	 p 	 0:27, these changes

appear to be mostly quantitative: the shape of phase trajecto-

ries is qualitatively persistent. Exemplary evolution of indi-

vidual variables at two values of p from this range is

presented in Fig. 10. All variables display more or less

ordered patterns. Recall that due to finite value of e the tra-

jectories stay at a bounded distance from the invariant

planes. For this reason, the times of residence in vicinities of

the saddles, instead of forming the growing geometric pro-

gression (as would be the case at e ¼ 0), weakly oscillate

near the constant values. Remarkably, these values for two

subsystems are different: there is no simple phase locking. In

both subsystems, we observe the typical winnerless competi-

tion. All three variables x (top row) as well as all three y vari-

ables (lower rows) oscillate in turn: while one of them

traverses the high plateau, two other ones nearly vanish. For

each variable in the y-system the plateaus consist of seg-

ments with three different heights: yi ¼ di � p
P

jgijxj where

xj are the coordinates of the master system at its saddle

points. Differences between the plateau heights are propor-

tional to p; they are weaker expressed in the left column of

the plot, but are well visible (especially for the variable y2)

in the right column. At p¼ 0.22 the temporal pattern is

apparently weakly disordered; furthermore, the plateaus of

y2 are distinctly wider than the plateaus of other driven varia-

bles: epochs of activity of y3 and, especially, of y1 turn into

the sharp spikes separated by uneven intervals.

Characteristic projections of the phase portrait onto

three-dimensional subspaces for this oscillatory state are

shown in Fig. 11. In the master x-subsystem (not shown), we

observe just the attracting heteroclinic contour. A plot with

two coordinates from the master system and one coordinate

from the driven y-subsystem (left panel of Fig. 11) has the

shape of a right triangular prism; equilibria are projected

onto vertices whereas the unstable manifolds run along the

edges. At finite e the attracting orbits escape the vertices

along the faces of the prism.

FIG. 10. Dynamics on the non-smooth torus: Temporal evolution of the system (5), (6), and (14) at e ¼ 10�18. Left column: p¼ 0.05; right column: p¼ 0.22.

Top row: variables of the master system. Lower rows: variables of the forced y system.

FIG. 9. Red and green solid curves: length-related exponents K1 and K2,

respectively. Blue solid curve: conventional (time-related) negative

Lyapunov exponent. The value of e is fixed at 10�27.
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The projection with coordinates entirely from the driven

subsystem (right panel of Fig. 11) has a triangular shape.

Recall that each vertex of the triangle results from projecting

of three different (and well separated in terms of coordinates

xi) points of equilibrium from the x-system. In terms of the

coordinates yi, the distances between these three projections

are proportional to p, and a closer look in Fig. 12 shows

that the triangle possesses a “width”: its vertices (and,

correspondingly the whole phase portrait) split into three

components. Deceptively close on the y-projection, these

components are macroscopically separated in terms of the

x-coordinates.

At still higher values of p, the picture changes drasti-

cally: in the range 0:28 	 p 	 0:42 only the variable y2 sur-

vives in the driven system whereas the variables y1 and y3

completely decay (numerically both of them attain the value

of e). An example of evolution of y2 is presented in Fig.

13(a): it consists of horizontal plateaus connected by seg-

ments of rapid transitions. Comparison with dynamics of

variables of the master system in Fig. 13(b) shows that each

plateau corresponds to the epoch of activity for one of the

master variables. At 0.43 	 p 	 0.45, a further regime is

observed [Figs. 13(c) and 13(d)] in which only y3 decays

whereas y1 and y2 alternate in activity. Finally, beyond

p¼ 0.45, the driven system returns to the state with only one

active variable that jumps between three plateaus [Figs.

13(e) and 13(f)]; this time it is the variable y1 whereas y2 and

y3 decay. The reasons for this profound change in dynamics

can be understood from the plot of parameter dependence of

the overall saddle indices of the heteroclinic contours (see

Sec. III): the products of saddle indices over all saddles par-

ticipating in the contour.39

The non-smooth torus at small jpj is built from several

heteroclinic contours: when the master x is frozen at one of

its saddle equilibria, the driven system has three saddle

points whose one-dimensional unstable manifolds form a

contour. Altogether, there are three such contours, and for

each of them the overall saddle index should be checked sep-

arately, taking into account only the eigenvalues pertaining

to the y-subspace. Recall: a heteroclinic contour is attracting

if its overall index exceeds 1.

Figure 14 shows dependence of all three overall indices

on the coupling strength p. For each curve, an initial weak

decrease is superseded by subsequent growth: attraction to

the contours becomes stronger. Remarkably, the saddle indi-

ces of separate saddles may decrease and fall below 1 (not

shown in Fig. 14); what matters, however, are not the sepa-

rate indices but their overall product—and it grows!

Furthermore, one by one, the values of the overall products

diverge: one of the respective positive eigenvalues becomes

small and finally vanishes: the equilibrium loses instability

and turns from the saddle into the stable node.

For an equilibrium lying on the coordinate axis of the y-

subsystem, stabilization is a result of the transcritical bifur-

cation. With the master system frozen at one of its saddles,

the driven subsystem, along with a set of three such “axial”

equilibria, possesses three further steady states, one in each

of the invariant planes yi¼0, i¼ 1, 2, and 3. At p¼ 0, all

three “in-plane” states have, in addition to zero, a positive

and a negative coordinate yi; thereby, they lie in the “non-

physical” part of the phase space. Two of these states are

asymptotically stable in the subspace y, whereas the third

one is a saddle with one negative and two positive Jacobian

eigenvalues. Since the coordinates of these equilibria are lin-

ear functions of the coupling p, some of them move into the

positive octant when p is increased. Crossing on their way

FIG. 12. Blowup of the phase space region near the y2-axis. Filled circles

and thicker curves: points of equilibrium and their separatrices. Parameter

values like in Fig. 11.

FIG. 11. Projections of the phase portrait of the system (5), (6), and (14) at

p¼ 0.05 and e ¼ 10�18.

FIG. 13. Dynamics after the breakup of the non-smooth torus: Temporal evolution of the system (5), (6), and (14) at e ¼ 10�18. Left column: p¼ 0.35; middle

column: p¼ 0.45; and right column: p¼ 0.48. Top row: non-decaying variables of the driven system: (a) y2; (c) y1;2; and (e) y1. Bottom row: variables of the

master system: x1; x2; x3.
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with the pertaining coordinate axis, they collide with the cor-

responding “axial” equilibrium. In the course of this tran-

scritical bifurcation, the equilibria exchange stability and the

axial one become stable. Explicit expressions for the bifurca-

tion parameter values are too lengthy to be quoted here.

Stabilization of the former saddle(s) changes the dynam-

ics of y at frozen x: now there is a simple attractor, the sub-

system eventually converges to it and stays there forever.

“Unfreezing” x leads to rapid switches in the dynamics of

the driven subsystem: arrival of the master system at its next

saddle point implies for the driven one a new structure of the

phase space, where there may still be three saddle points and

a heteroclinic contour, or, instead, a steady “axial” attractor

at which the driven system resides until the next switch. In

the latter case, two of the coordinates yi decay, whereas the

third one assumes the equilibrium value. In the course of the

further increase in p, stabilization of saddle states, step by

step, occurs in all three “frozen” subspaces, and finally heter-

oclinic dynamics in the driven system dies out. In the situa-

tions of the left and right columns of Fig. 13, the stable

equilibria before/after the switch lie on the same coordinate

axis, hence the evolution of the driven subsystem becomes

effectively one-dimensional; in the middle column, the

driven subsystem jumps between equilibria on two axes,

keeping the third coordinate negligible.

The states in the left and right columns of Fig. 13 illus-

trate replacement of the winnerless competition in the slave

subsystem y by the quasi-steady “winner-take-all” situation:

As long as the master x remains in the nearly static configu-

ration at one of its saddle-points, the slave subsystem syn-

chronizes with it, becoming static as well. Nontrivial

dynamics emerges in the situation of “nimble master, lazy

slave” when the typical time of heteroclinic switching in the

master subsystem is smaller than the time of relaxation to

the equilibrium in the slave subsystem; details of this dynam-

ics will be reported elsewhere.

Alteration of quasi-steady states also explains the practi-

cally piecewise-linear dependence on p of the negative

Lyapunov exponent (blue solid curve in Fig. 9 above). In

those states, the driven subsystem jumps between the

(emerging) stable equilibria, and the Lyapunov exponent is

just the weighted sum of the least negative Jacobian eigen-

values of these equilibria; the weights are the normalized

lengths of the corresponding plateaus. Since all eigenvalues

are linear functions of p, their weighted sum is same as well.

VI. DISCUSSION

In this paper, we have discussed coordination among

coupled heteroclinic networks, whose dynamics mimics

sequential switching of metastable information units.

Coupled networks of this kind exist on different levels of

brain elements hierarchy. The hierarchy itself results from

complex functional interactions, residing between the poles

of segregation and integration tendencies for networks that

perform joint specific cognitive and/or behavioral tasks. In

particular, we have suggested the dynamical mechanism of

low-dimensional coordination that is related to the general

information processing in the brain sequential units.10 The

key phenomenon of this coordination is entrainment of local-

ized units in multimodal brain activity.36

For the upper level of network hierarchy, we have pro-

posed a low-dimensional mathematical model of the brain-to

brain interaction. The model belongs to the class of general-

ized Lotka-Volterra systems that, when decoupled, feature

rhythmic activity. Regimes, observed in the phase space in

the case of the simplest master-slave configuration, can be

viewed as mathematical images of the corresponding cogni-

tive processes. Under sufficiently weak coupling, the attrac-

tor is a non-smooth two-dimensional torus that contains

equilibrium points of the saddle type and is composed of het-

eroclinic orbits joining those points. Instability of all trajec-

tories in the basin of the attractor is confirmed by presence

of two positive length-related Lyapunov exponents. Typical

pattern of behavior on the attractor is successive switching

between the saddles along different heteroclinic channels.37

(The described torus is a variant of the channel). Under

stronger coupling, the system undergoes a bifurcation related

to the breakup of the invariant torus. After the breakup, the

winnerless competition dynamics in the slave subsystem is

replaced by the winner-take-all quasistatics. This restricts

the number of options in the slave subsystem and makes

cooperation between the master and the slave more rigid.

A. Proper account of fluctuations

In numerical studies, we have substituted the fluctuating

terms in the equations (e.g., explicit multiplicative noise) by

the formal construction that keeps trajectories from coming

too close to the invariant hyperplanes. Replacement is justi-

fied by the fact that the sole role of fluctuations, regardless of

their explicit shape, is to kick the system out of the vicinities

of the equilibria where, otherwise, the system would spend

the overwhelming proportion of its time. Therefore, we

expect qualitatively the same results if, instead, the stochas-

tic version of Eq. (2) is simulated.

B. A few words about bidirectional coupling

Our analysis has been restricted to unilateral coupling;

in the dynamical system (2), this corresponds to vanishing

FIG. 14. Overall saddle indices, composed of eigenvalues, leading in the y-

subspace. Coloring denotes location of the saddle point in the x-subspace:

(x1¼r1, x2¼ x3¼0) for the red curve, (x1¼ 0, x2¼r2; x3¼0) for the green

curve, and (x1¼ x2¼0, x3¼r3Þ for the blue curve. Dotted vertical lines: sta-

bilization (via transcritical bifurcations) of respective saddles. Note: growth

of overall indices does not exclude the decrease in indices of separate sad-

dles (not shown here).
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parameter q, responsible for the reverse influence of the par-

ticipant Y upon the participant X. Part of our results can be

extended to the case of bidirectional interaction; this refers,

in particular, to the existence at weak coupling rates of the

attracting non-smooth torus with the heteroclinic network.

The proof in Sec. III is based on presence of the torus in the

case of decoupled subsystems and on the continuity argu-

ments for sufficiently weak unilateral coupling p. Similar

continuity arguments ensure persistence of this attractor

under sufficiently small values of reverse coupling q as well.

Accordingly, the system with weak two-way coupling should

also feature the “toroidal” winnerless competition, with het-

eroclinic channels between the saddles formed not along

one-dimensional separatrices but along two-dimensional

manifolds. Substantial increase in either (or both) of the cou-

pling coefficients p and q enforces the breakup of the non-

smooth torus; along with the mechanism described above

(partial regain of stability by the saddle points in one of the

subsystems), other scenarios can develop as well, e.g., loss

of attraction by some of the heteroclinic contours and subse-

quent “smoothing” of respective corners of the attractor.

Details of these effects will be reported elsewhere.

C. Master-slave case: Are we slaves of our memories?

As mentioned in the Introduction, unidirectional config-

uration of coupling can model the influence of episodic

memory in the past upon memory dynamics in the future. In

this respect, the winner-takes-all behavior described in the

end of Sec. V D might be of interest for certain kinds of men-

tal disorder where attention of a patient is rigidly fixed at a

few past events: the past memory (master) cyclically

switches between several episodes with long stay at each of

them; during these stays, the current memory (driven subsys-

tem) stays frozen, but as soon as the past episode changes,

the equilibrium of the current memory ceases to exist, and

the memory abruptly moves on to its new tentative attractor.

D. Brain-to-brain information generation

Episodic memory for real life involves the orchestration

of multiple time scales dynamical processes, including hier-

archical chunking and multimodal binding of events. To con-

centrate at the core of the phenomenon of episodic

entrainment, we have restricted our treatment to the simplest

approximation. We supposed that the characteristic time of

episodes forming i.e., chunking tch is much shorter than the

characteristic time tep of sequential switching between epi-

sodes. Based on the generalized hierarchical model of epi-

sodic memory,26 entrainment with arbitrary ratio tch � tep

can be considered. Interesting new dynamics is expected

within this modeling framework. In particular, confusion or

entanglement of the events from different episodes in the

entrainment memory can occur. The dynamical origin of

such memory errors can be the overlap of weakly chaotic

time series representing different episodes in the sequential

entrainment process (about the neurophysiological origin of

the errors and distortion in the episodic memory, see, for

example, Ref. 40) To estimate the level of information

generated in the error sequence of episodes, the technics sug-

gested in Ref. 41 can be employed.
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